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Setup

p 6= 2 prime;

K/Qp finite extension;

C/K a hyperelliptic curve of genus g ,

C : y2 = f (x) = c
∏
r∈R

(x − r).

For purposes of the presentation assume that

deg(f ) = 2g + 1 or 2g + 2 6= 1, 2, 4

f (x) ∈ OK [x ], c ∈ O×K and f (x) mod πK is not of the form
(x − z)n, (x − z1)n(x − z2)m, (x − z1)(x − z2)(x − z3)n or h(x)2.
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Cluster

A cluster s is a non-empty subset of R cut out by a p-adic disc:

s = R ∩ Disc(zs, d) = {r ∈ R | v(r − zs) ≥ d}, for some zs ∈ Qp, d ∈ Q.

Depth

The depth of s is
ds = min

r ,r ′∈s
v(r − r ′)

child/parent

If s′ ( s is a maximal subcluster, we call s′ the child of s and s the parent of s′.

sodd

For a cluster s we write sodd for the set of its children that have odd size.
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Theorem(Semistability criterion)

The curve C/K is semistable if and only if the following hold:
(i) K (R)/K has ramification degree at most 2,
(ii) Every cluster of size ≥ 2 is inertia invariant,
(iii) Every cluster s of size ≥ 3 has ds ∈ Z and

νs = |s|ds +
∑
r /∈s

v(r0 − r) ∈ 2Z for any r0 ∈ s.

Example (p 6= 3)

y2 = x3 − p2

r1 r2 r3 2
3

y2 = (x−1)(x−1+p2)(x−1−p2) · (x−2) · x(x−p3)

2 3

0

νR = 6×0 + 0 ∈ 2Z
νs = 3×2 + 3×0 ∈ 2Z
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Theorem(Special fiber of the minimal regular model Cmin)

Suppose that C/K is semistable. Then Cmin is given by

an (explicit) curve Γs for each cluster s of size ≥ 3;
genus gs where |sodd | = 2gs + 1 or 2gs + 2;
Γs is a union of two P1s if sodd is empty;

t child of s with |t| ≥ 3 odd — a chain of P1s from Γs to Γt of length dt−ds
2 −1,

t child of s with |t| ≥ 3 even — two chains of P1s from Γs to Γt of length dt−ds−1,

t child of s with |t| = 2 — a chain of P1s from Γs to itself of length 2(dt−ds)−1.

Example: C : y2 =(x−1)(x−1+p2)(x−1−p2) · (x−2) · x(x−p3)

2 3

0
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Consequences for semistable C/K

• The homology of the dual graph ΥC of Cmin is

H1(ΥC ,Z) = Z|A|,

where A is the set of clusters s 6=R with |s| even and |sodd | ≥ 1. Frobenius acts as an
(explicit) signed permutation, and there is an explicit formula for the intersection pairing.

• A formula for the Tamagawa number of the Jacobian (A. Betts).

• A criterion for whether C (K ) = ∅ for p sufficiently large.

• A criterion for whether C (K ) is deficient.
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Theorem: `-adic representation for ` 6= p

As IK -representations

H1
ét(C/K ,Q`) ∼= H1

ab ⊕ (H1
t ⊗ Sp(2)), with

H1
ab =

⊕
s: |s|≥3, |sodd |≥1

IndIK
Stab(s)Vs, H1

t =
⊕

s6=R: |s| even, |sodd |≥1

IndIK
Stab(s)εs,

where Vs = (Q`[sodd ]	 1	 εs)⊗ γs and εs, γs are explicit characters (or 0) of StabIK (s).

Curve and Clusters Frobenius Inertia

Let p = 17, a =
√
−p,

C : y2 =(x5−p2)(x−2)(x−1)(x−1−p3)

2
5 3

0



a 0 0 −a
0 0 a −a
0 0 0 −a
0 a 0 −a

1 0
0 p





0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

1 ∗
0 1


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Consequences for the Jacobian Jac(C )/K

• Jac(C ) has potentially good reduction if and only if all clusters s 6= R have odd size.

• The potential toric dimension of Jac(C ) is the number of clusters s 6= R of even size that
have an odd-size child.

• A formula for the conductor.

• A formula for the local root number if the inertia action on the roots is tame (M. Bisatt).
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Classification of semistable
curves of genus 2 (23 types)

Reduction type

Cluster picture

Dual graph of special fiber

Monodromy pairing

Frobenius action on dual graph

Local Root number

Tamagawa Number

Deficiency
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Thank you!
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	Local invariants of hyperelliptic curves and their Jacobians

